- 封装:48-TFSOP(0.240",6.10mm 宽)
- RoHS:无铅 / 符合限制有害物质指令(RoHS)规范要求
- 包装方式:Digi-Reel®
- 参考价格:$4.587-$8.51
更新日期:2024-04-01
产品简介:具有独立 LVTTL 端口和反馈路径的 8 位 LVTTL-GTLP 可调节边沿速率寄存收发器
查看详情- 封装:48-TFSOP(0.240",6.10mm 宽)
- RoHS:无铅 / 符合限制有害物质指令(RoHS)规范要求
- 包装方式:Digi-Reel®
- 参考价格:$4.587-$8.51
SN74GTLP2033DGGR 供应商
- 公司
- 型号
- 品牌
- 封装/批号
- 数量
- 地区
- 日期
- 说明
- 询价
-
TI
-
原厂原装
22+ -
3288
-
上海市
-
-
-
一级代理原装
SN74GTLP2033DGGR 中文资料属性参数
- 标准包装:1
- 类别:集成电路 (IC)
- 家庭:逻辑 - 专用逻辑
- 系列:74GTLP
- 逻辑类型:LVTTL-TO-GTLP 可调信号沿速率寄存收发器
- 电源电压:3.15 V ~ 3.45 V
- 位数:8
- 工作温度:-40°C ~ 85°C
- 安装类型:表面贴装
- 封装/外壳:48-TFSOP(0.240",6.10mm 宽)
- 供应商设备封装:48-TSSOP
- 包装:®
- 其它名称:296-12468-6
产品特性
- Member of the Texas Instruments Widebus Family
- TI-OPC Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OEC Circuitry Improves Signals Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTLP Open-Drain Outputs (100 mA)
- LVTTL Outputs (\x9624 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- Ioff, Power-Up 3-State, and BIAS VCC Support Live Insertion
- Distributed VCC and GND Pins Minimize
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 1000-V Charged-Device Model (C101)
- 2000-V Human-Body Model (A114-A)
- 1000-V Charged-Device Model (C101)
产品概述
The SN74GTLP2033 is a high-drive, 8-bit, three-wire registered transceiver that provides inverted
LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and
flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback
path for control and diagnostics monitoring, the same functionality as the SN74FB2033. The device provides
a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal
levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result
of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC
circuitry, and TI-OPC circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have
been designed and tested using several backplane models. The high drive allows incident-wave switching in
heavily loaded backplanes with equivalent load impedance down to 11 .
GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3.
The ac specification of the SN74GTLP2033 is given only at the preferred higher noise-margin GTLP, but the
user has the flexibility of using this device at either GTL (VTT = 1.2 V and VREF = 0.8 V) or GTLP (VTT = 1.5 V
and VREF = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI
application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and
GTLP in BTL Applications, literature number SCEA017.
Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels,
but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. VREF is the B-port differential input
reference voltage.
This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff
circuitry disables the outputs, preventing damaging current backflow through the device when it is powered
down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power
down, which prevents driver conflict. The BIAS VCC circuitry precharges and preconditions the B-port
input/output connections, preventing disturbance of active data on the backplane during card insertion or
removal, and permits true live-insertion capability.
This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated
backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves
signal integrity, which allows adequate noise margin to be maintained at higher frequencies.
High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC
input voltage between low and high adjusts the B-port output rise and fall times.This allows the designer to
optimize system data-transfer rate and signal integrity to the backplane load.
When VCC is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OEAB\ should be tied to VCC through a pullup resistor
and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is
determined by the current-sinking/current-sourcing capability of the driver.
SN74GTLP2033DGGR 数据手册
数据手册 | 说明 | 数量 | 操作 |
---|---|---|---|
![]() |
8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER WITH SPLIT LVTTL PORT AND FEEDBACK PATH |
15 Pages页,368K | 查看 |
![]() |
LVTTL-TO-GTLP Adjustable-Edge-Rate Registered Transceiver IC 48-TSSOP |
21页,592K | 查看 |
SN74GTLP2033DGGR 相关产品
- 74ACT1284MTCX
- 74LVC1GX04DCKTG4
- 74LVC1GX04GW,125
- 74SSTUB32868AZRHR
- 74SSTUB32868ZRHR
- 8V182512IDGGREP
- CD4007UBE
- CD4007UBEE4
- CD4007UBM96
- CD4007UBNSR
- CD4007UBPWR
- CD40117BE
- CD4089BE
- CD4089BEE4
- CD4089BNSR
- CD4089BPWR
- CD4527BE
- CD4527BNSR
- CD4527BPWR
- CD74AC283E
- CD74AC283M96
- CD74ACT283E
- CD74ACT283M
- CD74HC283E
- CD74HC283M
- CD74HC283M96
- CD74HCT283E
- CD74HCT283M96
- CLVC1GX04MDRLREP
- MC100E116FNR2G